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Section 1

Introduction
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Linear equations

In linear algebra, we start with linear equations. In high school algebra,
we learned about the linear equation y = mx + b. However, we will be
considering linear equations with multiple variables that are ordered, which
can be written in the following form:

a1x1 + a2x2 + · · ·+ anxn = b

The coefficient may be any real number (a ∈ R). However, the variable
must be to the 1 power.
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Examples of linear equations

The following are linear equations:

x1 = 5x2 + 7x3 − 12 – Nothing looks out of the ordinary here.

x2 =
√

5(9− x3) + πx1 – The coefficients can be non-integers and
irrational.
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Counterexamples of linear equations

However, the following are NOT linear equations:

3(x1)2 + 5(x2) = 9 – We can’t have a quadratic.

9x1 + 7x2x3 = −45 – We also can’t have variables multiplying by each
other.

3
√
x1 + x2 = 2 – We furthermore can’t have roots of variables, nor

any other non-polynomial function.
x3
x1

+ x2 = 3 – Inverses are not allowed either.

sin x1 + cos3 x2 − ln x3 + e−x4 = −9 – Obviously no transcendental
functions are allowed.
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System of linear equations

A system of linear equations (or a linear system) is a collection of linear
equations that share the same variables.
If an ordered list of values are substituted into their respective variables in
the system of equations and each equation of the system holds true, then
we call this collection of values a solution.
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Example of system of linear equations

Say we have the ordered list of values (1, 3, 2). This would be a solution of
the following system of linear equations:

x1 + x2 + x3 = 6
x2 + x3 = 5

x3 = 2

because if you substituted the solution for the respective variables, you get

1 + 3 + 2 = 6
3 + 2 = 5

2 = 2

which are all valid, true statements.
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Consistency

A system can have more than one solution. We call the collection of all
solutions the solution set. If two systems have exactly the same solution
set, they are actually the same system.
In high school algebra, you learned that the solution of two linear
equations was the point at which they intersected; this still holds true, but
in linear algebra, we’ll be dealing with more generalized cases that might
be too complicated to solve graphically.
There are three possibilities (and only three) to the number of solutions a
system can have: 0, 1, and ∞.
A system is inconsistent if it has no solutions and it is consistent if it has
at least one solution.

No solutions - inconsistent

Exactly one solution - consistent

Infinitely many solutions - consistent
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Section 2

Introduction to matrices
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Matrix notation

An m × n matrix is a rectangular array (or, ordered listing) of numbers
with m rows and n columns, where m and n are both natural numbers.
We can use matrices to represent systems in a concise manner.
Given the system of linear equations:

3x1 + 5x2 = 9
7x2 = 56

We can rewrite this in matrix notation:[
3 5 9
0 7 56

]
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Notes about matrix notation

[
3 5 9
0 7 56

]
Notice we have kept only the coefficients of the variables. Each row
represents one equation and each column represents one variable. The last
column is not a column of variables, but instead of the constants. We
usually put a vertical line between the second-to-last and last column on
the matrix to denote this.
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Definitions of matrix notation

[
3 5 9
0 7 56

]
The matrix we’ve just created contains both the coefficients and the
constants. We call this kind of matrix an augmented matrix. If we only
had the coefficients: [

3 5
0 7

]
then we call this the coefficient matrix.
You can apply many of the terminologies and the concepts we’ve
established for systems onto matrices. For instance, a consistent system
means a consistent matrix.

NoBS Linear Algebra Chapter 1: Systems of linear equations May 1, 2018 12 / 90



Solving matrices

We’re going to apply the same operations we used to solve systems of
linear equations back in high school algebra, except this time in matrices.
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Elementary row operations

The three elementary row operations for matrices are:

1 Scaling – multiplying all of the values on a row by a constant

2 Interchange – swapping the positions of two rows

3 Replacement – adding two rows together: the row that is being
replaced, and a scaled version of another row in the matrix.
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Properties of elementary row operations

These row operations are reversible. In other words, you can undo the
effects of them later in the process.
We consider two augmented matrices to be row equivalent if there is a
sequence of elementary row operations that can transform one matrix into
another. Two matrices A and B may appear different, but if you can go
from matrix A to B using these elementary row operations, then A ∼ B.
In fact, there are infinitely many row equivalent matrices.
Linking back to the previous section: if two augmented matrices are row
equivalent, then they also have the same solution set, which again
confirms that they are the same matrix/system.
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Existence and uniqueness (part 1)

Two fundamental questions establish the status of a system/matrix:

1 Existence - does a solution exist? (i.e. Is this matrix consistent?)

2 Uniqueness - if a solution exists, is this solution unique?

The rest of this chapter is dedicated to the methods used to finding
whether a solution exists and is unique. The first half focuses on concepts
and techniques that give us existence, and the second half focuses on
uniqueness. Then, we’ll combine them together in transformations.
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Triangular form

For now, these questions are answered by using row operations to change
the matrix into something we’ll call triangular form. (This will be one of
many ways to show existence.) This means that all values of the matrix
below the ”diagonal line” are zero. We can make them zero through row
operations.
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Case 1: not triangular form

This matrix is not in triangular form:2 3 4 2
7 2 3 4
4 19 9 9


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Case 2: triangular form and consistent

This matrix is in triangular form and consistent:3 5 7 23
0 2 3 45
0 0 9 34


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Case 3: triangular form but not consistent

This matrix, while in triangular form, is NOT consistent:7 8 9 10
0 11 8 5
0 0 0 3


This is because the last row says 0 = 3, which is false. Therefore, there
are no solutions for that matrix, so therefore it is inconsistent.
Consistency = existence. They are the same thing.
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Row reduction

Now that we’re beginning to delve into solving matrices using row
operations, let’s develop an algorithm and identify a pattern that will let
us find the solution(s) of a matrix.
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Echelon form

This pattern was identified in the previous section. We called it by an
informal name (”triangular form”) but this is actually not its formal name.
The pattern is called echelon form (or row echelon form, pronounced
”esh-uh-lohn”). The official definition of echelon form is a matrix that has
the following properties:

1 Any rows of all zeros must be below any rows with nonzero numbers.

2 Each ”leading entry” of a row (which is the first nonzero entry,
officially called a pivot) is in a column to the right of the leading
entry/pivot of the row above it.

3 All entries in a column below a pivot must be zero.
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Reduced echelon form

While echelon form is helpful, we actually want to reduce a matrix down
to reduced echelon form (or reduced row echelon form) to obtain the
solutions of the matrix. There are two additional requirements for a matrix
to be in reduced echelon form:

4 The pivot in each nonzero row is 1. (All pivots in the matrix must be
1.)

5 Each pivot is the only nonzero entry of the column.

While there are infinitely many echelon forms for a certain matrix, there is
only one unique reduced echelon form for a certain matrix.
Note that sometimes, reduced echelon form is not necessary to solve a
problem in linear algebra. Ask yourself if you really need reduced echelon
form. Usually, the answer is no.
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Echelon form terminologies

A matrix in echelon form is an echelon matrix, and if in reduced echelon
form, then it’s a reduced echelon matrix.
Pivots are the leading nonzero entries of the row. A pivot position is a
position of a certain pivot. A pivot column is a column that contains a
pivot position.
For instance, in the following matrix: 3 5 8 7 23

0 2 10 3 45

0 0 0 9 34


3 (located at row 1, column 1), 2 (at row 2, column 2), and 9 (at row 3,
column 4) are the pivots (with their respective pivot positions).
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Gaussian elimination (the row reduction algorithm)

This is the process through which you can reduce matrices. It always
works, so you should use it!
Forward phase (echelon form):

1 Start with the leftmost nonzero column. This is a pivot column. The
pivot position is the topmost entry of the matrix.

2 Use row operations to make all entries below the pivot position 0.
3 Move to the next column. From the previous pivot, go right one and

down one position. Is this number zero? If so, move to the next
column, but only move right one (don’t move down one) and repeat
the process. Otherwise, don’t move. This is the next pivot. Repeat
the steps above until all entries below pivots are zeros.

Backward phase (reduced echelon form):
1 Begin with the rightmost pivot.
2 Use row operations to make all entries above the pivot position 0.
3 Work your way to the left.
4 After every entry above the pivots are 0, see if any pivots are not 1. If

so, use scaling to make it 1.
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Evaluating solutions of a linear system

Reduced echelon form gives us the exact solutions of a linear system. We
also found solutions by reducing our matrices to regular echelon form,
plugging in values for the variables, and obtaining a solution. These are
both valid ways to solve for a linear system. Now, let’s interpret what
these results mean.
Each column of a matrix corresponds to a variable. In our current
nomenclature, we call these variables x1, x2, x3, and so on. Accordingly,
the first column of the matrix is associated with variable x1 and so on.
If there is a pivot in a column (i.e. a column is a pivot column), then this
variable has a value assigned to it. In an augmented matrix in reduced
echelon form, the value is in the corresponding row of the last column.
This variable is called a basic variable.
What if a column does not have a pivot within it? This indicates that the
value of this column’s variable does not affect the linear system’s solution.
Therefore, it is called a free variable.
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Parametric description of a solution set

The parametric description of a solution set leverages the above
definitions. It is another way to represent the solution set.
For the following reduced echelon form augmented matrix:1 0 8 0 5

0 1 10 0 7
0 0 0 1 3


its parametric description is 

x1 = 5

x2 = 7

x3 is free

x4 = 3
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Existence and uniqueness (part 2): of matrices

If the bottom row of an augmented matrix is all zero EXCEPT for the
rightmost entry, then the matrix will be inconsistent.
Visually, if the bottom row of an augmented matrix looks like this:[

0 . . . 0 b
]

then this system is inconsistent.
Furthermore, if a system is consistent and does not contain any free
variables, it has exactly one solution. If it contains one or more free
variables, it has infinitely many solutions.

NoBS Linear Algebra Chapter 1: Systems of linear equations May 1, 2018 28 / 90



Section 3

Vectors and vector equations
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Vectors

Back when we discussed the different kinds of solutions of a linear system,
we assigned each variable of the system x1, x2, . . . , xn its own column.
Whatever number is its subscript is whichever column it represented in the
matrix.
In fact, we’ll now define these individual columns to be called vectors.
Specifically, we call them column vectors: they have m number of rows
but only one column. They are matrices of their own right.
Row vectors also exist, and have n columns but just one row. They are
rarely used, and usually, the term vector refers to column vectors. (From
now on, we will refer to column vectors simply as vectors unless otherwise
specified.)
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Vectors (continued)

We represent the set of all vectors with a certain dimension n by Rn. Note
that n is the number of rows a vector has. For instance, the vector

~v =

[
4
3

]
has two rows, so it is a vector within the set R2.

Two vectors are equal if and only if:

they have the same dimensions

the corresponding entries on each vector are equal
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Vector operations and properties

The two fundamental vector operations are vector addition and scalar
multiplication.

Vector addition:

[
1
2

]
+

[
3
7

]
=

[
1 + 3
2 + 7

]
=

[
4
9

]
Scalar multiplication: 5

[
3
2

]
=

[
5 · 3
5 · 2

]
=

[
15
10

]
Vectors are commutative, associative, and distributive. This means we can
use these operations together as well.
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Vectors and matrices

A set of vectors can themselves form a matrix by being columns of a

matrix. For instance, if we are given ~v =

1
3
4

 , ~u =

9
5
2

 , ~w =

7
8
6

, and

they are all within the set A, then they can be represented as a matrix:

A =

1 9 7
3 5 8
4 2 6


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Combining vectors

We can use vector operations to form new vectors. In fact, given a set of
vectors, we are usually able to use these vector operations to represent

infinitely many vectors. For instance, given the vector ~v =

[
1
0

]
and

~u =

[
1
1

]
, we can use just ~v and ~u to create any vector in R2, the set of all

vectors with two real number entries.
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Combining vectors: example

For instance, if we want to make ~b =

[
8

17

]
, we can write it as

−9

[
1
0

]
+ 17

[
1
1

]
= −9~v + 17~u =

[
8

17

]
.

We can also put these vectors into matrices in the form
[
~v ~u | ~b

]
:[

1 1 8
0 1 17

]
We can then derive from this matrix these equations and conclusions:

x2 = 17

x1 + x2 = 8

x1 = 8− 17 = −9
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Ramifications of combining vectors

Therefore, we have just determined that the solution of this matrix will
give us the coefficients (or weights) of the vectors in order to give us this
vector ~b.
Using vector operations to represent another vector is called a linear
combination, which we will explore in the next section.
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Section 4

Linear combinations
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Linear combinations

A linear combination is the use of vector operations to equate a vector ~y
to the vectors ~v1, ~v2, . . . , ~vp ∈ Rn with coefficients, or weights
c1, c2, . . . , cp.

~y = c1~v1 + c2~v2 + · · ·+ cp~vp

An example of a linear combination is 3~v1 − 2~v2.

NoBS Linear Algebra Chapter 1: Systems of linear equations May 1, 2018 38 / 90



Span

The possible linear combinations that can result from a set of vectors
{~v1, ~v2, . . . , ~vp} is called the span.
The span is simply where this linear combination can reach. The span of

~v1 =

[
1
2

]
is simply the line parallel to ~v1. Notice you can’t make much else

out of that except scaling it. However, if you add ~v2 =

[
0
1

]
to the mix,

you can now create a linear combination to get ANY value in R2 or the 2D
plane. That means these two vectors’ possibilities spans R2. For instance,[

9
20

]
= 9~v1 + 2~v2.
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Span (continued)

We say that a vector ~y spans {~v1, ~v2, ~v3}, etc. through the notation
~y ∈ Span{~v1, ~v2, ~v3}.
The formal definition of span: if ~v1, ~v2, . . . , ~vp ∈ Rn, then the set of all
linear combinations of ~v1, ~v2, . . . , ~vp is denoted by Span{~v1, ~v2, . . . , ~vp}
and is called the subset of Rn spanned by ~v1, ~v2, . . . , ~vp:

Span{~v1, ~v2, . . . , ~vp} = {c1~v1+c2~v2+· · ·+cp~vp : c1, c2, . . . , cp are scalars.}
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Existence and uniqueness (part 3): of linear combinations

If there is a solution to the vector equation x1~v1 + x2~v2 + · · ·+ xp~vp = ~b,
then there is a solution to its equivalent augmented matrix:[
~v1 ~v2 . . . ~vp ~b

]
. The solution to the equivalent augmented matrix

are in fact the weights of the vector equation. That means we can get
x1, x2, . . . , xp from reducing the equivalent augmented matrix.
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Example (part 1)

Let’s say we have two vectors ~a1 =

2
6
7

 and ~a2 =

−1
−5
−4

. Can the vector

~b =

 8
32
24

 be generated as a a linear combination of ~a1, ~a2?

Let’s consider what this means. Basically, is there a way we can find the
following to be true?

x1

2
6
7

+ x2

−1
−5
−4

 =

 8
32
24


We have to add these vectors ~a1 and ~a2 together. Obviously you can’t just
add them together. So, can we multiply the vectors and then add them

together in some form to get ~b =

 8
32
24

? Maybe.
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Example (part 2)

The question is, what are the coefficients needed for this to happen?
We can solve for the coefficients by putting ~a1 and ~a2 in a matrix as
columns and then ~b as the final column. Sound familiar? That’s because
this is an augmented matrix in the form

[
~a1 ~a2 ~b

]
:

~a1 ~a2 ~b2 −1 8
6 −5 32
7 −4 24


We reduce this matrix and find the solutions from there.
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Example (part 3)

Here’s the reduced echelon form of the above augmented matrix:1 0 2
0 1 −4
0 0 0


The last column contains the answers. The first entry of the last row is
x1 = 2 and the second entry of the last row is x2 = −4. Now, let’s insert
these values back into the linear combination:

x1

2
6
7

+ x2

−1
−5
−4

 =

 8
32
24



2

2
6
7

− 4

−1
−5
−4

 =

 8
32
24


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Example (part 4)

 4
12
14

+

 4
20
16

 =

 8
32
24


 4 + 4

12 + 20
14 + 16

 =

 8
32
24


 8

32
24

 =

 8
32
24


Hey, these values x1 = 2 and x2 = −4 indeed hold true. That means yes,
we can generate a linear combination from ~a1 and ~a2 for ~b.
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Example (part 5)

However, the question is whether ~b can be generated as a linear
combination of ~a1 and ~a2.
Because the augmented matrix we made from the vectors was consistent,
we can conclude that ~b can be generated as a linear combination of ~a1 and
~a2.
We did not need to do anything past the reduced echelon form. We just
needed to see whether the augmented matrix was consistent.
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Example (part 6)

For this same example, is ~b in the span of {~a1, ~a2}?
The span refers to the possible combinations of a linear combination.
Since ~b is a possible linear combination of {~a1, ~a2}, then yes, ~b is in the
span of {~a1, ~a2}.
To recap, ~b generated as a linear combination of ~a1, ~a2 is the same
question as whether ~b is in the span of ~a1, ~a2. They are both proven by

seeing whether the augmented matrix of
[
~a1 ~a2 ~b

]
is consistent.
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Section 5

Basic matrix multiplication
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Basic matrix multiplication

To prepare for our next section, we will first jump to a limited scope of
matrix multiplication where we are multiplying a matrix by a vector.
We can multiply matrices by each other. This operation multiplies the
entries in a certain pattern. We can only multiply two matrices by each
other if the first matrix’s number of columns is equal to the second
matrix’s number of rows.
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Basic matrix multiplication (continued)

To be clear, let’s say we have the first matrix and second matrix:

The number of columns of the first matrix must equal the number of
rows of the second matrix.

The resulting matrix will have the number of rows that the first
matrix has and the number of columns that the second matrix has.

For instance, we can multiply:

[
1 2 3

] 4
5
6


but not [

1 8
] 4

2
3


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Multiplying matrices

So how do we multiply matrices? Let’s start with the simple example that
worked. [

1 2 3
] 4

5
6

 =
[
1 · 4 + 2 · 5 + 3 · 6

]
=
[
32
]

So we took the first row’s entry and multiplied it by the first column’s
entry, then add to it the second row’s entry by the second column’s entry,
etc.
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Multiplying matrices (continued)

Now what if we had two rows on the first matrix?

[
1 2 3
4 5 6

]7
8
9


We do what we did the first time, except this time we put the second
row’s products on another row.

[
1 2 3
4 5 6

]7
8
9

 =

[
1 · 7 + 2 · 8 + 3 · 9
4 · 7 + 5 · 8 + 6 · 9

]
=

[
50

122

]
For now, we will not worry about cases where there are more columns on
the second matrix.
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Section 6

The matrix equation A~x = ~b
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The matrix equation: recalling linear combinations

Recall that a linear combination is the use of some vectors manipulated
with vector operations and coefficients (called weights) to equate to
another vector.

x1~a1 + x2~a2 + · · ·+ xp~ap = ~b
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The matrix equation: recalling our previous example

In the previous section’s example, we set the vectors ~a1, ~a2 to be the
following and ~b to be the following:

x1

2
6
7

+ x2

−1
−5
4

 =

 8
32
24


Instead of writing x1, x2 as coefficients, we can actually put them in their
own vector and use matrix multiplication to achieve the same thing.2 −1

6 −5
7 4

[x1
x2

]
=

 8
32
24


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Defining the matrix equation

The first matrix is A, the coefficient matrix. The vector in the middle is
the collection of all weights, and it’s called ~x . The vector on the right, the
linear combination of A~x , is called ~b.
This equation’s general form is A~x = ~b and is the matrix equation.
In general:

A~x =
[
~a1 ~a2 . . . ~ap

]

x1
x2
...
xp

 = x1~a1 + x2~a2 + · · ·+ xp~ap = ~b

This is a great way to represent linear combinations in a simple, precise
manner.
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Existence and uniqueness (part 4): Four ways to represent
a consistent linear system

So far, we have learned four ways to represent a consistent system (where
a solution exists):

1 Pivots: The coefficient matrix A has a pivot position in each row.

2 Linear combination: ~b is a linear combination of the columns of A.

3 Span: ~b is in the span of the columns of A.

4 Matrix equation: If A~x = ~b has a solution.
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Section 7

Homogeneous linear systems
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Introduction to homogeneous linear systems

A homogeneous linear system is a special kind of linear system in the
form A~x = ~b where ~b = ~0.
In other words, a homogeneous linear system is in the form A~x = ~0.
What gives about them? They have some special properties.
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Properties of homogenous linear systems

All homogeneous systems have at least one solution. This solution is
called the trivial solution and it’s when ~x = ~0. Of course A ·~0 = ~0 is
true; that’s why we call it trivial!

But the real question is, is there a case where a homogeneous system
A~x = ~0 when ~x 6= ~0? If such a solution exists, it’s called a nontrivial
solution.

How do we know if there is a nontrivial solution? This is only possible
when A~x = ~0 has a free variable. When a free variable is in the
system, it allows ~x 6= 0 while A~x = 0.

Therefore, we can say whenever a nontrivial solution exists for a
homogeneous system, it has infinitely many solutions. When only
the trivial solution exists in a homogeneous system, the system has a
unique solution (uniqueness).
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Parametric vector form

When we have free variables, we describe basic variables with relation to
the free variables. We group the weights of the free variables to the basic
variables through parametric vector form.
If I have:
x1 = 3x2 + 4x3
x2 = 2x3
x3 free
Then we will do necessary replacements to arrive at:
x1 = 10x3
x2 = 2x3
x3 = x3
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Parametric vector form (continued)

If we combine them in ~x =

x1x2
x3

 then we get ~x =

10x3
2x3
x3

. Factor out the

x3 and we get ~x = x3

10
2
1

. Now, we have represented the solution ~x to

the matrix equation A~x = ~b in parametric vector form x3

10
2
1

.
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Non-homogeneous linear systems in terms of homogeneous
linear systems

What linear system is a non-homogeneous linear system? Basically, it’s
anything where A~x 6= ~0. So, basically most matrix equations.
What’s fascinating is that non-homogeneous linear systems with infinitely
many solutions can actually be represented through homogeneous linear
systems that have nontrivial solutions. This is because non-homogeneous
linear systems are in fact homogeneous linear systems with a translation by
a certain constant vector ~p, where ~x = ~p + t~v . t~v is where all of the free
variables are located.
And guess what? Since this system has infinitely many solutions, the
translation is taken out when A~x = ~0. That means, for a system with
infinitely many solutions (i.e. one that can be written in parametric vector
form), the nonconstant vector ~v (the one with the free variables),
without the constant vector ~p, is a possible solution!
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Section 8

Linear independence
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Introduction to linear independence

Now, within our linear combination, could we have duplicate vectors? Yes.
Graphically speaking, if two vectors are multiples of each other, they would
be parallel. The whole point of linear combinations is to make new
vectors. What use is two vectors that are multiples of each other? That’s
redundant.
This is where the concept of linear independence comes in. Are there
any redundant variables in the linear combination? Or, are there any
redundant rows in a reduced matrix? If so, there are redundancies and
therefore we say the combination is linearly dependent. If nothing is
redundant, then it’s linearly independent.
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Formal definition of linear independence

Mathematically, however, we have a formal way of defining linear
independence. If the linear combination x1~v1 + x2~v2 + . . . xp~vp = ~0 has
only the trivial solution, then it’s linearly independent. Otherwise, if there
exists a nontrivial solution, it must be linearly dependent.
Why is that? If there are redundant vectors, then there exists weights for
them to cancel each other out. Let’s say we have two vectors

~v1 =

1
2
3

 , ~v2 =

2
4
6

. Clearly, ~v2 is a multiple of ~v1. So we can say

2~v1 = ~v2. We can rearrange this to get 2~v1 − 1~v2 = ~0. Therefore, per our
formal definition, {~v1, ~v2} is linearly dependent.
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Linear independence and uniqueness

If a set of vectors are linearly dependent, then there are infinitely many
ways to make a combination. Therefore, there would be infinitely many
solutions for A~x = ~b. However, if a set of vectors are linearly independent,
then there would only be at most one way to form the solution for A~x = ~b.
This leads us to a conceptual connection that is very important: if a set
of vectors are linearly independent, at most one solution can be
formed. This means linear independence implies uniqueness of solution.
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Linear independence of a set of one vector

A set with one vector contained within is linearly independent unless this
vector is the zero vector. The zero vector is linearly dependent but has
only the trivial solution.1

2
3

 is linearly independent.

[
0
0

]
is linearly dependent and has only the

trivial solution.
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Linear independence of a set of two vectors

Given two vectors ~v , ~u, then this set is linearly independent as long as ~v is
not in the span of ~u. It could also be the other way around, but the same
result still holds true.
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Linear independence of a set of multiple vectors

We have several rules for determining linear dependence of a set of
multiple vectors. If one rule holds true, then the set is linearly dependent.

If at least one of the vectors in the set is a linear combination of some
other vectors in the set, then the set is linearly dependent. (Note that
not all have to be a linear combination of each other for this to hold
true. Just one needs to be a linear combination of others.)

If there are more columns than rows in a coefficient matrix, that
system is linearly dependent.

If a set contains the zero vector ~0, then the set is linearly dependent.
It’s easy to create the zero vector with any vector; just make the
weight 0, lol.
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Why is this true?

”If there are more columns than rows in a coefficient matrix, that system
is linearly dependent.”
Why? Recall that the number of entries a vector has is equivalent to the
number of dimensions it contains. If there are more vectors than
dimensions, the vectors will be redundant within these dimensions. For

instance, ~v1 =

[
1
2

]
only spans a line in R2. If we add ~v2 =

[
0
1

]
to the set,

we can now span all of R2 because ~v1 is not parallel to ~v2. But if we add

~v3 =

[
−1
0

]
, it doesn’t add anything new to the span. We’re still in R2 but

with a redundant vector. Furthermore, ~v1 = 2~v2 − 1~v3, so clearly that
would be a linearly dependent set of vectors.
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Section 9

Linear transformations
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Background of linear transformations

We have studied the matrix equation A~x = ~b. This equation is kind of like
y = mx + b, which is just a relation. These relations can be represented as
functions in regular algebra as f (x) = mx + b. Now, we will transition to
the equivalent of functions in linear algebra, called linear transformations.
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Introduction to linear transformations

A linear transformation, also called a function or mapping, is where we
take the vector ~x and manipulate it to get the result T (~x). This is the
same concept as turning x into f (x). How do we manipulate it? We have
several options, but for now, we will stick with the coefficient matrix A.
Using the coefficient matrix for manipulation means we are using a special
form of linear transformation called a matrix transformation. (Note of
clarification: If we talk about A, then we are referring to a matrix
transformation. Otherwise, we are referring to a general linear
transformation.)
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Linear transformations: definitions

For the coefficient matrix A with size m × n (where m is the number of
rows and n is the number of columns), the number of columns n it has is
the domain (Rn) while the number of rows m it has is the codomain
(Rm). The codomain is different from the range.
Specifically, the transformed vector ~x itself, T (~x), is called the image of ~x
under T . Note that the image is like the ~b in A~x = ~b, and in fact,
T (~x) = ~b.
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Linear transformation: things to think about

Something to keep in mind: matrix equations can have no solutions, one
solution, or infinitely many solutions. If no ~x can form an image, it means
there’s no solutions. If only one ~x forms an image, then there is only one
solution. But if we can find more than one ~x (i.e. there’s probably a basic
variable) then we have infinitely many solutions and not a unique solution.
Why isn’t the codomain the range? Well, the range is the places where
the solution to this matrix exists. The image is the actual vector ~x
transformed, while the codomain is just the new domain where the image
resides after this transformation has shifted. Not all of the codomain is in
the range of the transformation. Remember, this is linear algebra, and
we’re shifting the dimensions here with these transformations, so we have
to differentiate between which dimension we’re in before and after. If
A~x = ~b, then ~b is in the range of the transformation ~x 7→ A~x .
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Linear transformation notation

By the way, the notation to represent a transformation’s domain to
codomain is:

T : Rn 7→ Rm

Note that 7→ is read as ”maps to”, so that’s why we’ll call use the terms
transformations and mappings interchangeably. It’s just natural!
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Properties of linear transformations

It’s important to note that matrix transformations are a specific kind of
linear transformation, so you can apply these properties to matrix
transformations, but they don’t solely apply to matrix transformations.
Also, don’t forget later on that these properties hold true for other kinds
of linear transformations. With that in mind, the following properties
apply to all linear transformations:

T (~u + ~v) = T (~u) + T (~v), for ~u, ~v ∈ Domain{T}
T (c~u) = cT (~u), for c ∈ R, ~u ∈ Domain{T}
T (~0) = ~0 - oh yeah, that’s right. Those ”linear functions”
y = mx + b with b 6= 0 you learned about in Algebra I? They’re not
actually ”linear functions” in linear algebra.

So why do these properties even matter? In problems, you are given T (~u)
but not ~u itself (i.e. ~b and not ~x in A~x = ~b), so you must isolate T (~u)
from these operations to do anything meaningful with it.
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Section 10

The matrix of a linear transformation
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Background of the matrix of a linear transformation

In the previous section, we mainly dealt with ~x in the matrix equation
A~x = ~b. Why is A~x = ~b a transformation? Because, every linear
transformation that satisfies Rm 7→ Rn is a matrix transformation. (Note:
This means only linear transformations with Rm 7→ Rn is a matrix
transformation. What was said before about not all linear transformations
being matrix transformations still holds true.) And because they are
matrix transformations, we can use the form ~x 7→ A~x to represent our
transformations. In this section, we will shift the focus from ~x to A.
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Now, when we map ~x 7→ A~x , we have technically do have a coefficient in
the front of the lone ~x . So really, we should say I~x 7→ A~x . What matrix I
always satisfies ~x = I~x? The identity matrix In, which is a matrix size
n × n with all zeroes except for ones down the diagonal.

I2 =

[
1 0
0 1

]
, I3 =

1 0 0
0 1 0
0 0 1

 , I4 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 , etc.
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Why does this matter? Well, in I~x 7→ A~x , ~x is on both sides. So really, the
transformation represents a change from I , the identity matrix, to A. We
shall name A the standard matrix.
The columns of the identity matrix, which we shall call {~e1, ~e2, . . . , ~en},
correlate to the columns of the standard matrix, which are just
transformations of the identity matrix’s columns (i.e.
A = [T (~e1)T (~e2) . . . T (~en)]).
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Another vector representation format

We can write vectors another way: ~x =

[
x1
x2

]
= (x1, x2). This comes in

handy when we want to write a transformation as a tuple, like we do for a

function: T (x1, x2) = (x1 + x2, 3x2) =

[
x1 + x2

3x2

]
.

T (x1, x2) = (x1 + x2, 3x2)

is the same thing as

T (~x) = A~x = ~b

is the same thing as

T (

[
x1
x2

]
) =

[
1 1
0 3

] [
x1
x2

]
=

[
x1 + x2

3x2

]
(Note that a tuple is the generic term for an ordered pair with more than
two values. For instance, (1, 3, 4) is a 3-tuple. And technically, (2, 5) is an
ordered pair, also called a 2-tuple.)
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Existence and uniqueness (part 5): Onto and one-to-one

Two ways we can characterize transformations are whether they are onto
mappings, one-to-one mappings, both, or neither. They help us
determine the existence and uniqueness of solution(s) for transformations.
Formal definitions:
A mapping T : Rn 7→ Rm is onto Rm if for each ~b in the codomain Rm,
there exists a ~x in the domain Rn so that T (~x) = ~b.
A mapping T : Rn 7→ Rm is one-to-one if each ~b in the codomain Rm is
the image (or result) of at most one ~x in the domain Rn.
These definitions connect transformations back to the matrix equation and
existence and uniqueness.
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One-to-one and onto meaning

If a mapping is onto, that means every value in its domain maps to
something else on the new codomain. (”No Value Left Behind!”) That
means there shall always exist a solution ~x for T (~x) = ~b, right? Well,
T (~x) = A~x . And if T (~x) always has a solution, so does A~x . Remember
what A~x always having a solution means? The columns of its matrix A
span the codomain Rm.
If a mapping T (~x) = ~b is one-to-one, which means it has one unique
solution, then similarly, A~x = ~b must also have a unique solution. And that
means the columns of A are linearly independent, which is true because
that’s also a way to say a matrix’s columns form a unique solution.
Now, practically speaking, we need to use a few evaluating techniques to
determine whether transformations are onto, one-to-one, both, or neither.
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Implications of one-to-one and onto

Onto:

Is there a pivot in each row? If yes, it IS onto.

Do the columns of A span the codomain Rm? If yes, it IS onto.

Is m < n (i.e. the number of rows is less than the number of
columns)? If yes, it is NOT onto.

One-to-one:

Is there a pivot in each column? If yes, it IS onto.

Are the columns of A linearly independent? If yes, it IS one-to-one.

Is m > n (i.e. the number of rows is greater than the number of
columns)? If yes, it is NOT one-to-one.

Are there any free variables? If yes, it is NOT one-to-one.
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In summary

Onto mapping (also called surjective): does a solution exist? If yes,
then the transformation is onto. More precisely, T maps the domain
Rm onto the codomain Rn.

One-to-one mapping (also called injective): are there infinitely
many solutions? (i.e. are there any free variables in the equation?) If
yes, then the transformation is NOT one-to-one.

If a transformation is one-to-one, then the columns of A will be linearly
independent.
If there is a pivot in every row of a standard matrix A, then T is onto.
If there is a pivot in every column of a standard matrix A, then T is
one-to-one.
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Section 11

Summary of Chapter 1: Ways to represent existence
and uniqueness
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Existence

The following concepts are related to or show existence of a solution:

If a pivot exists in every row of a matrix.

If a system is consistent.

If weights exist for a linear combination formed from the columns of
the coefficient matrix to equate the solution.

If the solution is in the span of a set of vectors, usually the set of
vectors in a linear combination or the columns of the coefficient
matrix.

If there exists a solution for A~x = ~b.

If a transformation is onto or surjective.
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Uniqueness

The following concepts are related to or show uniqueness of a solution:

If a pivot exists in every column of a matrix.

If there are no free variables (solely basic variables) in a solution.

If a homogeneous linear system A~x = ~0 has only the trivial solution
where ~x = 0 is the only solution to A~x = ~0.

If a solution can be expressed in parametric vector form.

If a set of vectors is linearly independent.

If a transformation is one-to-one or injective.
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